DEPARTMENT OF BOTANY # GOVERNMENT DEGREE COLLEGE, PALAKONDA # ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION (A Statutory body of the Government of Andhra Pradesh) 3rd,4th and 5th floors, Neeladri Towers, Sri Ram Nagar, 6th Battalion Road, Atmakur (V), Mangalagiri (M), Guntur-522 503, Andhra Pradesh Web: www.apsche.org Email: secretaryapsche@gmail.com # REVISED SYLLABUS OF BOTANY UNDER CBCS FRAMEWORK WITHEFFECT FROM 2020-2021 **PROGRAMME: THREE-YEAR BOTANY** (With Learning Outcomes, Unit-wise Syllabus, References, Co-curricular Activities & Model Q.P.) For Fifteen Courses of 1, 2, 3 & 4 Semesters) (To be Implemented from 2020-21 Academic Year) # APSCHE/ REVISION OF C.B.C.S – BOTANY COURSE W.E.F.2020-21 | S.
No. | Semester | Title of the Course (Paper) | Hours
/week | Max.
Marks
(SEE) | Marks
in CIA | Credit
s | |-----------|-----------------------|---|----------------|--|---|-------------| | 1. | SemI/
Course-1 | Fundamentals of Microbes and Non-vascular Plants | 04 | 75 | 25 | 03 | | | Course-1
Practical | Fundamentals of Microbes and Non-vascular Plants | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | | 2. | SemII/
Course-2 | Basics of Vascular plants and Phytogeography | 04 | 75 | 25 | 03 | | | Course-2
Practical | Basics of Vascular plants and Phytogeography | 03 | Max. Marks-50 External assessment at Semester end | | 02 | | 3. | SemIII/
Course-3 | Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity | 04 | 75 | 25 | 03 | | | Course-3
Practical | Anatomy and Embryology of Angiosperms, Plant Ecology and Biodiversity | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | | 4. | SemIV
Course-4 | Plant Physiology and Metabolism | 03 | 75 | 25 | 03 | | | Course-
4Practical | Plant Physiology and Metabolism | 03 | Max. Marks-50 External assessment at Semester end | | 02 | | 5. | Sem IV
Course- 5 | Cell Biology, Genetics and Plant Breeding | 04 | 75 | 25 | 03 | | | Course-
5Practical | Cell Biology, Genetics and Plant Breeding | 03 | Max. Marks-50
External
assessment at
Semester end | | 02 | | 6. | | Domain related Skill Enhancement Courses (02) | 03 | 75 | 25 | 03 | | | Sem V | - Three (3) pairs of courses (each pair has 2 related courses) will be offered, | 03 | Internal | Max. Marks-50
Internal assessment
at Semester end | | | | Course – 6 & 7 | student has to choose a pair of courses. | 03 | 75 | 25 | 03 | | | | | 03 | Max. Marks-50
Internal assessment
at Semester end | | 02 | # CBCS/SEMESTER SYSTEM(W.e.f. 2020-21 Admitted Batch) IV Semester/Botany Core Course – 4 # **Plant Physiology and** # Metabolism (Total hours of teaching – 60 @ 04 Hrs./Week) # Plant Physiology and Metabolism (P-IV) On successful completion of this course, the students will be able to; - ➤ Comprehendthe importance of water in plant life and mechanisms for transport of water and solutes in plants. - ➤ Evaluate the role of minerals in plant nutrition and their deficiency symptoms. - ➤ Interpret the role of enzymes in plant metabolism. - ➤ Critically understand the light reactions and carbon assimilation processes responsible for synthesis of foodin plants. - Analyze the biochemical reactions in relation to Nitrogen and lipid metabolisms. - > Evaluate the physiological factors that regulate growth and development in plants. - ➤ Examine the role of light on flowering and explain physiology of plants under stress conditions. #### **Unit – 1: Plant-Water relations** #### 10 Hrs. - 1. Importance of water to plant life, physical properties of water, diffusion, imbibition, osmosis. water potential, osmotic potential, pressure potential. - 2. Absorption and lateral transport of water; Ascent of sap - 3. Transpiration: stomata structure and mechanism of stomatal movements (K⁺ ion flux). - 4. Mechanism of phloem transport; source-sink relationships. # Unit – 2: Mineral nutrition, Enzymes and Respiration 14 Hrs. - 1. Essential macro and micro mineral nutrients and their role in plants; symptoms of mineral deficiency - 2. Absorption of mineral ions; passive and active processes. - 3. Characteristics, nomenclature and classification of Enzymes. Mechanism of enzyme action, enzyme kinetics. 4. Respiration: Aerobic and Anaerobic; Glycolysis, Krebs cycle; electron transport system, mechanism of oxidative phosphorylation, Pentose Phosphate Pathway (HMP shunt). #### **Unit – 3: Photosynthesis and Photorespiration** 12 Hrs. - 1. Photosynthesis: Photosynthetic pigments, absorption and action spectra; Red drop and Emerson enhancement effect - 2. Concept of two photosystems; mechanism of photosynthetic electron transport and evolution of oxygen; photophosphorylation - 3. Carbon assimilation pathways (C3,C4 and CAM); - 4. Photorespiration C2 pathway # **Unit – 4: Nitrogen and lipid metabolism** 12 Hrs. - 1. Nitrogen metabolism: Biological nitrogen fixation asymbiotic and symbiotic nitrogen fixing organisms. Nitrogenase enzyme system. - 2. Lipid metabolism: Classification of Plant lipids, saturated and unsaturated fatty acids. - 3. Anabolism of triglycerides, β -oxidation of fatty acids, Glyoxylate cycle. ### Unit – 5: Plant growth - development and stress physiology 12 Hrs. - 1. Growth and Development: Definition, phases and kinetics of growth. - 2. Physiological effects of Plant Growth Regulators (PGRs) auxins, gibberellins, cytokinins, ABA, ethylene and brassinosteroids. - 3. Physiology of flowering: Photoperiodism, role of phytochrome in flowering. - 4. Seed germination and senescence; physiological changes. #### **Text books:** - ➤ Botany IV (Vrukshasastram-II) : Telugu Akademi, Hyderabad - Pandey, B.P. (2013) College Botany, Volume-III, S. Chand Publishing, New Delhi - ➤ Ghosh, A. K., K. Bhattacharya &G. Hait (2011) A Text Book of Botany, Volume-III, New Central Book Agency Pvt. Ltd., Kolkata #### **Books for Reference:** - Aravind Kumar & S.S. Purohit (1998) Plant Physiology Fundamentals and Applications, AgroBotanica, Bikaner - Datta, S.C. (2007) Plant Physiology, New Age International (P) Ltd., Publishers, New Delhi - Hans Mohr & P. Schopfer (2006) Plant Physiology, Springer (India) Pvt. Ltd., New Delhi - ➤ Hans-Walter heldt (2005) *Plant Biochemistry*, Academic Press, U.S.A. - ➤ Hopkins, W.G. & N.P.A. Huner (2014) *Introduction to Plant Physiology*, Wiley India Pvt. Ltd., New Delhi - Noggle Ray & J. Fritz (2013) Introductory Plant Physiology, Prentice Hall (India), New Delhi - ➤ Pandey, S.M. &B.K.Sinha (2006)*Plant Physiology*, Vikas Publishing House, New Delhi - Salisbury, Frank B. & Cleon W. Ross (2007) Plant Physiology, Thomsen & Wadsworth, Austalia & U.S.A - Sinha, R.K. (2014) Modern Plant Physiology, Narosa Publishing House, New Delhi - ➤ Taiz, L.&E. Zeiger (2003) *Plant Physiology*, Panima Publishers, New Delhi - ➤ Verma, V.(2007) Text Book of Plant Physiology, Ane Books India, New Delhi # Practical Syllabus of BotanyCore Course – 4 / Semester – IV Plant Physiology and Metabolism (Total hours of laboratory exercises 30 Hrs. @ 02 Hrs. /Week) **Course outcomes:** On successful completion of this practical course, students shall be able to: - Conduct lab and field experiments pertaining to Plant Physiology, that is, biophysical and biochemical processes using related glassware, equipment, chemicals and plant material. - 2. Estimate the quantities and qualitative expressions using experimental results and calculations - 3. Demonstrate the factors responsible for growth and development in plants. # **Practical Syllabus** - 1. Determination of osmotic potential of plant cell sap by plasmolytic method using *Rhoeo/Tradescantia* leaves. - 2. Calculation of stomatal index and stomatal frequency of a mesophyte and a xerophyte. - 3. Determination of rate of transpiration using Cobalt chloride method / Ganong's potometer (at least for a dicot and a monocot). - 4. Effect of Temperature on membrane permeability by colorimetric method. - 5. Study of mineral deficiency symptoms using plant material/photographs. - 6. Demonstration of amylase enzyme activity and study the effect of substrate and Enzymeconcentration. - 7. Separation of chloroplast pigments using paper chromatography technique. - 8. Demonstration of Polyphenol oxidase enzyme activity (Potato tuber or Apple fruit) - 9. Anatomy of C3, C4 and CAM leaves - 10. Estimation of protein by biuret method/Lowry method - 11. Minor experiments Osmosis, Arc-auxonometer, ascent of sap through xylem, cytoplasmic streaming. ### **Model Question Paper for Practical Examination** Semester – IV/ Botany Core Course – 4 ## Plant Physiology and Metabolism Max. Time: 3 Hrs. Max. Marks: 50 - 1. Conduct the experiment 'A' (Major experiment), write aim, principle, material and apparatus/equipment, procedure, tabulate results and make conclusion. 20 M - Demonstrate the experiment 'B' (Minor experiment), write the principle,procedure and give inference. - 3. Identify the following with apt reasons. $3 \times 4 = 12 M$ - **A.** Plant water relations / Mineral nutrition - **B.** Plant metabolism - C. Plant growth and development - 4. Record + Viva-voce 5 + 3 = 8 M # **Suggested co-curricular activities for Botany Core Course-4 in Semester-IV:** #### A. Measurable: #### a. Student seminars: - 1. Antitranspirants and their significance in crop physiology and horticulture. - 2. Natural chelating agents in plants. - 3. Criteria of essentiality of elements and beneficial elements. - 4. Hydroponics, aquaponics and aeroponics. - 5. Mycorrhizal association and mineral nutrition in plants. - 6. Non-proteinaceous enzymes. - 7. Respiratory inhibitors. - 8. Structure of ATPase and Chemiosmotic hypothesis. - 9. Transpiration and photosynthesis a compromise. - 10. Amphibolic pathways and bypass pathways in plants. - 11. Non-biological nitrogen fixation. - 12. Role of Hydrogenase in nitrogen fixation. - 13. Plant lectins their role in plants and use in medicine and medical research. # b. Student Study Projects: - 1. Stomatal densities among different groups of plants. - 2. Various treatments (salt, cold, high temperature, heavy metals) and their effects on seed germination. - 3. Effects of plant hormones (IAA, Gibberellin and Kinetin) on Seed Germination. - 4. Diurnal variation of stomatal behavior in CAM and C3 plants found in local area. - 5. Effects of nitrogen fertilizer on plant growth. - 6. Enumeration of C3, C4 and CAM plants in the local area. - 7. Effect of different light wavelengths (red light, green light, blue light) on apparent photosynthesis in terms of growth. - 8. Light effects on leaf growth and leaf orientation. - 9. Artificial Fruit Ripening Process by various treatments (carbide and ethylene). - 10. Study of relative water content and water retention by leaves under different environments. - 11. Study of soil nutrients in local agricultural fields. - 12. Study of mineral deficiency symptoms of various crops of local area. - 13. Study of local weeds in crop fields. - 14. Studies on seed storage proteins, oils and starch in local millets and pulse crops. - 15. Making a report on LDPs, SDPs and DNPs in their locality. - **c. Assignments**: Written assignment at home / during '0' hour at college; preparation of charts with drawings, making models etc., on topics included in syllabus. #### B. General: - 1. Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modules in syllabus of the course. - 2. Visit to a Plant Physiology laboratory in a University or Physiology division in a Agriculture/Horticulture University/Research station. # IV Semester / Botany Core Course -5 Cell Biology, Genetics and Plant Breeding (Total hours of teaching – 60 @ 04 Hrs./Week) # Theory: # **Learning outcomes:** On successful completion of this course, the students will be able to: - Distinguish prokaryotic and eukaryotic cells and design the model of a cell. - > Explain the organization of a eukaryotic chromosome and the structure of geneticmaterial. - ➤ Demonstrate techniques to observe the cell and its components under amicroscope. - Discuss the basics of Mendelian genetics, its variations and interpret inheritance of traits in living beings. - ➤ Elucidate the role of extra-chromosomal genetic material for inheritance of characters. - Evaluate the structure, function and regulation of genetic material. - > Understand the application of principles and modern techniques inplant breeding. - Explain the procedures of selection and hybridization for improvement of crops. Unit – 1: The Cell 12 Hrs. - 1. Cell theory; prokaryotic vs eukaryotic cell; animal vs plant cell; a brief account on ultra-structure of a plant cell. - 2. Ultra-structure of cell wall. - 3. Ultra-structure of plasma membrane and various theories on its organization. - 4. Polymorphic cell organelles (Plastids); ultrastructure of chloroplast. Plastid DNA. #### **Unit – 2: Chromosomes** #### 12 Hrs. - 1. Prokaryotic vs eukaryotic chromosome. Morphology of a eukayotic chromosome. - 2. Euchromatin and Heterochromatin; Karyotype and ideogram. - 3. Brief account of chromosomal aberrations structural and numerical changes - 4. Organization of DNA in a chromosome (solenoid and nucleosome models). # **Unit – 3:Mendelian and Non-Mendelian genetics** 14Hrs. - 1. Mendel's laws of inheritance. Incomplete dominance and co-dominance; Multiple allelism. - 2. Complementary, supplementary and duplicate gene interactions (plant based examples are to be dealt). - 3. A brief account of linkage and crossing over; Chromosomal mapping 2 point and 3 point test cross. - 4. Concept of maternal inheritance (Corren's experiment on *Mirabilis jalapa*); Mitochondrial DNA. #### **Unit – 4:Structure and functions of DNA** 12 Hrs. - 1. Watson and Crick model of DNA. Brief account on DNA Replication (Semi-conservative method). - 2. Brief account on Transcription, types and functions of RNA. Gene concept and genetic code and Translation. - 3. Regulation of gene expression in prokaryotes Lac Operon. # **Unit – 5:Plant Breeding** 12 Hrs. - 1. Plant Breeding and its scope; Genetic basis for plant breeding. Plant Introduction and acclimatization. - 2. Definition, procedure; applications and uses; advantages and limitations of :(a) Mass selection, (b) Pure line selection and (c) Clonal selection. - 3. Hybridization schemes, and technique; Heterosis(hybrid vigour). - 4. A brief account on Molecular breeding DNA markers in plant breeding. RAPD, RFLP. #### **Text books:** - ➤ Botany III (Vrukshasastram-I) : Telugu Akademi, Hyderabad - ➤ Pandey, B.P. (2013) College Botany, Volume-III, S. Chand Publishing, New Delhi - ➤ Ghosh, A.K., K.Bhattacharya&G. Hait (2011) *A Text Book of Botany, Volume-III*, New Central Book Agency Pvt. Ltd., Kolkata - Chaudhary, R. C. (1996) Introduction to Plant Breeding, Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi #### **Books for Reference:** - S. C. Rastogi (2008) *Cell Biology*, New Age International (P) Ltd. Publishers, New Delhi - ▶ P. K. Gupta (2002)*Cell and Molecular biology*, Rastogi Publications, New Delhi - B. D. Singh (2008) *Genetics*, Kalyani Publishers, Ludhiana - ➤ A.V.S.S. Sambamurty (2007) *Molecular Genetics*, Narosa Publishing House, New Delhi - ➤ Cooper, G.M. & R.E. Hausman (2009) *The Cell A Molecular Approach*, A.S.M. Press, Washington - ➤ Becker, W.M., L.J. Kleinsmith& J. Hardin (2007) *The World of Cell*, Pearson Education, Inc., New York - ➤ De Robertis, E.D.P. & E.M.F. De Robertis Jr. (2002)*Cell and Molecular Biology*, Lippincott Williams & Wilkins Publ., Philadelphia - ➤ Robert H. Tamarin (2002) *Principles of Genetics*, Tata McGraw Hill Publishing Company Limited, New Delhi. - ➤ Gardner, E.J., M. J. Simmons & D.P. Snustad (2004) *Principles of Genetics*, John Wiley & Sons Inc., New York - ➤ Micklos, D.A., G.A. Freyer& D.A. Cotty (2005) DNA Science: A First Course, I.K. International Pvt. Ltd., New Delhi ➤ Chaudhari, H.K.(1983) *Elementary Principles of Plant Breeding*, TMH publishers Co., New Delhi - ➤ Sharma, J.R. (1994) *Principles and Practice of Plant Breeding*, Tata McGraw-Hill Publishers, New Delhi - ➤ Singh,B.D. (2001) Plant Breeding: Principles and Methods, Kalyani Publishers, Ludhiana - ➤ Pundhan Singh (2015) *Plant Breeding for Undergraduate Students*, Kalyani Publishers, Ludhiana - ➤ Gupta, S.K. (2010) *Plant Breeding : Theory and Techniques*, Agrobios (India), Jodhpur - ➤ Hayes, H.K., F.R. Immer& D.C. Smith (2009) *Methods of Plant Breeding*, Biotech Books, Delhi # Practical Syllabus of Botany Core Course – 5/IVSemester Cell Biology, Genetics and Plant Breeding (Total hours of laboratory exercises 30 Hrs. @ 02 Hrs. /Week) **Course Outcomes:** After successful completion of this practical course the student shall be able to: - 1. Show the understanding of techniques of demonstrating Mitosis and Meiosis in the laboratory and identify different stages of cell division. - 2. Identify and explain with diagram the cellular parts of a cell from a model or picture and prepare models - 3. Solve the problems related to crosses and gene interactions. - 4. Demonstrate plant breeding techniques such as emasculation and bagging # **Practical Syllabus:** - 1. Study of ultra structure plant cell and its organelles using Electron microscopic Photographs/models. - 2. Demonstration of Mitosis in *Allium cepa/Aloe vera* roots using squashtechnique; observation of various stages of mitosis in permanent slides. - 4. Demonstration of Meiosis in P.M.C.s of *Allium cepa* flower buds using squash technique; observation of various stages of meiosis in permanent slides. - 4. Study of structure of DNA and RNA molecules using models. - 5. Solving problems monohybrid, dihybrid, back and test crosses. - 6. Solving problems on gene interactions (atleast one problem for each of the gene interactions in the syllabus). - 7. Chromosome mapping using 3- point test cross data. - 8. Demonstration of emasculation, bagging, artificial pollination techniques for hybridization. # **Model paper for Practical Examination** Semester-IV / Botany Core Course – 5 # Cell Biology, Genetics and Plant Breeding Max. Time: 3 Hrs. Max. Marks: 50 1. Make a cytological preparation of given material 'A' (mitosis or meiosis in Onion) by squash technique, report any two stages, draw labeled diagrams and write the reasons. 15 M - 2. Solve the given Genetic problem (Dihybrid cross/ Interaction of genes/ 3-point test cross) 'B' and write the conclusions. 15 M - 3. Identify the following and justify with apt reasons. $3 \times 4 = 12 M$ - **C.** Cell Biology (Cell organelle) - **D.** Genetics (DNA/RNA) - E. Plant Breeding - 4. Record + Viva-voce 5 + 3 = 8 M # **Suggested co-curricular activities for Botany Core Course- 5 in Semester-IV:** #### A. Measurable: #### a. Student seminars: - 1. Light microscopy: bright field and dark field microscopy. - 2. Scanning Electron Microscopy (SEM). - 3. Transmission Electron Microscopy (TEM). - 4. Mitosis and Meiosis - 5. Cell cycle and its regulation. - 6. Cell organelles bounded by single membrane. - 7. Prokaryotic chromosomes - 8. Special types of chromosomes :Polytene, Lampbrush and B-chromosomes. - 9. Different forms of DNA. - 10. Gene mutations. - 11. DNA damage and repair mechanisms. - 12. Reverse transcription. - 13. Protein structure. - 14. Modes of reproduction in plants. - 15. Modes of pollination in plants # **b.** Student Study Projects: - 1. Study of mitoticcell cycle in roots of Aliumcepa - 2. Study of mitoticcell cycle in roots of *Aloe vera* - 3. Observation of chromosomal aberrations in *Allium cepa* root cells exposed toindustrial effluent(s). - 4. Observation of chromosomal aberrations in *Allium cepa* root cells exposed toheavy metal(s). - 5. Observation of polyembryony in *Citrus* spp.and *Mangiferaindica*. - **c. Assignments**: Written assignment at home / during '0' hour at college; preparation of charts with drawings, making models etc., on topics included in syllabus. #### B. General: - 1. Field visit to Agriculture/Horticulture University/ Research station to observe Plant breeding methods. - 2. Group Discussion (GD)/ Quiz/ Just A Minute (JAM) on different modules in syllabus of the course. #### RECOMMENDED ASSESSMENT OF STUDENTS: ### Recommended continuous assessment methods for all courses: Some of the following suggested assessment methodologies could be adopted. Formal assessment for awarding marks for Internal Assessment in theory. #### (a) Formal: - 1. The oral and written examinations (Scheduled and surprise tests), - 2. Simple, medium and Critical Assignments and Problem-solving exercises, - 3. Practical assignments and laboratory reports, - 4. Assessment of practical skills, - 5. Individual and group project reports, - 6. Seminar presentations, - 7. Viva voce interviews. #### (b) Informal: - 1. Computerized adaptive testing, literature surveys and evaluations, - 2. Peers and self-assessment, outputs form individual and collaborative work - 3. Closed-book and open-book tests, # Common pattern for Question Paper for Theory Examination(s) at Semester end Max. Time: 3 Hrs. Max. Marks: 75 M #### Section - A #### Answer all the following questions. 5 x 2 = 10 M ✓ One question should be given from each Unit in the syllabus. #### Section – B Answer any <u>three</u> of the following questions. Draw a labeled diagram wherever necessary $3 \times 5 = 15 \text{ M}$ ✓ One question should be given from each Unit in the syllabus. # Section - C Answer any <u>five</u> of the following questions. Draw a labeled diagram wherever necessary $5 \times 10 = 50 \text{ M}$ ✓ Two questions (a & b) are to be given from each Unit in the syllabus (internal choice in each unit). Student has to answer 5 questions by choosing one from a set of questions given from a Unit. **Note:**Questions should be framed in such a way to test the understanding, analytical and creative skills of the students. All the questions should be given within the frame work of the syllabus prescribed. _____ #### Annexure #### Objectives and General Outcomes of Programme and Domain Subject **Programme(B.Sc.) Objectives:** The objectives of bachelor's degree programme with Botany are: - 1. To provide a comprehensive knowledge on various aspects related to microbes and plants. - 2. To deliver knowledge on latest developments in the field of Plant sciences with a practical approach. - 3. To produce a student who thinks independently, critically and discuss various aspects of plant life. - 4. To enable the graduate to prepare and pass through national and international examinations related to Botany. - 5. To empower the student to become an employee or an entrepreneur in the field of Botany /Biology and to serve the nation. # **ProgrammeOutcomes:** - 1. Understand the basic concepts of Botany in relation to its allied core courses. - 2. Perceive the significance of microbes and plants for human welfare, and structural and functional aspects of plants. - 3. Demonstrate simple experiments related to plant sciences, analyze data, and interpret them with the theoretical knowledge. - 4. Work in teams with enhanced inter-personal skills. - 5. Develop the critical thinking with scientific temper. - 6. Effectively communicate scientific ideas both orally and in writing. #### **Domain Subject(Botany) Objectives:** - 1. To impart knowledge on origin, evolution, structure, reproduction and interrelationships of microbes and early plant groups. - 2. To provide knowledge on biology and taxonomy of true land plants within a phylogenetic framework. - 3. To teach aspects related to anatomy, embryology and ecology of plants, and importance of Biodiversity. - 4. To explain the structural and functional aspects of plants with respect to the cell organelles, chromosomes and genes, and methods of plant breeding. . - 5. To develop a critical understanding on SPAC, metabolism and growth and development in plants. - 6. To enable the students proficient in experimental techniques and methods of analysis appropriate for various sub-courses in Botany. # **Domain Subject(Botany) Outcomes:** - 1. Students will be able to identify, compare and distinguish various groups of microbes and primitive plants based on their characteristics. - 2. Students will be able to explain the evolution of trachaeophytes and also distribution of plants on globe. - 3. Students will be able to discuss on internal structure, embryology and ecological adaptations of plants, and want of conserving Biodiversity. - 4. Students will be able to interpret life processes in plants in relation to physiology and metabolism. - 5. Students will be able to describe ultrastructure of plant cells, inheritance and crop improvement methods. - Students will independently design and conduct simple experiments based on the knowledge acquired in theory and practicals of the different sub-courses in Botany. .____ # **SUBJECT EXPERTS** Prof. C.Sudhakar Dept of Botany, Sri Krishnadevaraya University, Anantapur > Dr.A.Srinivasa Rao Lecturer in Botany, Govt Degree College, Mandapeta # **SYLLABUS VETTED BY** Prof.M.Vijaya Lakshmi, Dept of Botany and Microbiology, Acharya Nagarjuna University, Nagarjuna Nagar